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Abstract
In this paper we present the model used by the team Rivercorners

for the 2017 RepEval shared task. First, our model separately encodes
a pair of sentences into variable-length representations by using a bidi-
rectional LSTM. Later, it creates fixed-length raw representations by
means of simple aggregation functions, which are then refined using an
attention mechanism. Finally it combines the refined representations of
both sentences into a single vector to be used for classification. With
this model we obtained test accuracies of 72.057% and 72.055% in the
matched and mismatched evaluation tracks respectively, outperform-
ing the LSTM baseline, and obtaining performances similar to a model
that relies on shared information between sentences (ESIM). When us-
ing an ensemble both accuracies increased to 72.247% and 72.827%
respectively.

Introduction
The Second Workshop on Evaluating Vector Space Representa-
tions for NLP (RepEval 2017) features a shared task meant to
evaluate natural language understanding models based on sen-
tence encoders by the means of NLI in the style of a three-class
balanced classification problem over sentence pairs. The shared
task includes two evaluations, a standard in-domain (matched)
evaluation in which the training and test data are drawn from the
same sources, and a cross-domain (mismatched) evaluation in
which the training and test data differ substantially. This cross-
domain evaluation is aimed at testing the ability of submitted
systems to learn representations of sentence meaning that cap-
ture broadly useful features.
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Figure 1: General architecture of our proposed model.
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Figure 2: Word representation layer architecture. For each word we em-
bed each of its characters, we feed the resulting vectors to a LSTM, take
the last hidden state and conatenate it with a pretrained word embedding.

Context Representation Layer

Bidirectional LSTM

Context-rich
word vectors

Word 
vectors

Figure 3: Context representation layer architecture. Word vectors re-
turned by the previous layer are fed to a bidirectional LSTM to generate
context-rich word representations.
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Figure 4: Pooling and attention layers. A raw sentence representation is
created by pooling the context-rich word vectors returned by the previous
layer. Then an attention mechanism uses both this newly created raw rep-
resentation and the previous context-rich vectors to create a more refined
sentence representation.
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Figure 5: Aggregation layer architecture. Premise and hypothesis refined
vectors are multiplied and subtracted, and the results are concatenated to
the original refined vectors to obtain the final sentence representation.

hmul = h̄′P � h̄
′
H (4)

hdif = |h̄′P − h̄
′
H | (5)

r = [h̄′P ; h̄′H ;hmul;hdif ] (6)
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Figure 6: Fully connected layer architecture. The final sentence repre-
sentation is fed to a softmax function and the greatest probability’s index
is chosen as the predicted label.

Experimental Setup
Corpus: MultiNLI + 15% SNLI randomly sampled once

Word Embeddings: GloVe 300d 840b, not fine tuned

Character Embeddings: Uniform(−0.05, 0.05), 20d

Character-level LSTM output dim.: 50

Word-level BiLSTM output dim.: 300× 2

Attention: W : 1200× 600 matrix; v: vector of dim 600. Both
initialized from Uniform(−0.005, 0.005)

Fully-connected Layer: 3-layer MLP with 2000 hidden units
each and ReLU activations

Optimizer: RMSprop, learning rate 0.001

Dropout: 0.25 only applied between layers of the MLP

Miscellaneous: All characters were made lowercase, num-
bers transformed into single token, ignored sentence pairs
with premises longer than 200 words, and those with an un-
defined label (“-”)

Results
Method w/o. chars w. chars
mean 71.3 ± 1.2 71.3 ± 0.7
sum 70.7 ± 1.0 70.9 ± 0.8
last 70.9 ± 0.6 71.0 ± 1.2
max 70.6 ± 1.1 71.0 ± 1.1

Table 1: Mean matched validation accuracies (%) broken down by type of
pooling method and presence or absence of character embeddings. Con-
fidence intervals are calculated at 95% confidence over 10 runs for each
method.

Method w/o. chars w. chars
mean 72.3 71.8
sum 71.6 71.6
last 71.4 72.1
max 71.1 71.6

Table 2: Best matched validation accuracies (%) obtained by each pooling
method in presence and absence of character embeddings.

Genre CBOW ESIM InnerAtt
Fiction 67.5 73.0 73.2
Government 67.5 74.8 75.2
Slate 60.6 67.9 67.2
Telephone 63.7 72.2 73.0
Travel 64.6 73.7 72.8
9/11 63.2 71.9 70.5
Face-to-face 66.3 71.2 74.5
Letters 68.3 74.7 75.4
Oup 62.8 71.7 71.5
Verbatim 62.7 71.9 69.5
MultiNLI Overall 64.7 72.2 72.3

Table 3: Validation accuracies (%) for our best model broken down by genre.
Both CBOW and ESIM results are reported as in [11].

Conclusions and Future Work
We presented the model used by the team Rivercorners in the
2017 RepEval shared task. Despite being conceptually simple
and not relying on shared information between premise and hy-
pothesis for encoding each sentence, nor on tree structures, our
implementation achieved results as good as the ESIM model.

As future work we plan to incorporate part-of-speech embed-
dings to our implementation and concatenate them at the same
level as we did with the character embeddings. We also plan to
use pretrained character embeddings to see whether they have
any positive impact on performance.

Additionally, we think we could obtain better results by fine-
tuning some hyperparameters such as the character embedding
dimensions, the character-level LSTM encoder output dimen-
sion, and the Dense Layer architecture.

Further, we would like to see how different types of attention
affect the overall performance. For this implementation we used
the concat scoring scheme (eq. 1), as described by Luong et al.
[6], but there are several others that could provide better results.

Finally, we would like to exploit the structured nature of de-
pendency parse trees by means of recursive neural networks [9]
to enrich our initial sentence representations.
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